Music Recommendations Based on Real-Time Data

Publicerad

Typ

Examensarbete för kandidatexamen
Bachelor Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

This thesis describes the development, implementation and results of a music recommender system that utilizes real time data, namely time and heart rate, for the recommendations. The recommender system was made by combining two systems, the recommender system which predicts a number of song features for a specific user and a ranking system which finds the best matching tracks for these features. Three implementations of the recommender system were implemented for comparison, namely Deep Neural Network, Contextual Bandit and Linear Regression. These implementations were tested with offline evaluation which showed that for our problem, a contextual bandit model had the best accuracy.

Beskrivning

Ämne/nyckelord

Data- och informationsvetenskap, Computer and Information Science

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced