A deep learning approach for identifying sarcasm in text

Examensarbete för kandidatexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/251695
Download file(s):
File Description SizeFormat 
251695.pdfFulltext1.69 MBAdobe PDFView/Open
Type: Examensarbete för kandidatexamen
Bachelor Thesis
Title: A deep learning approach for identifying sarcasm in text
Authors: Bark, Oscar
Grigoriadis, Andreas
Pettersson, Jan
Risne, Victor
Siitova, Adéle
Yang, Henry
Abstract: The aim of this work is to evaluate the performance of deep learning, specifically models of Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), on the problem of detecting sarcasm in tweets. This is done partly by comparing our results to current state-of-the art performance, and partly by making a qualitative analysis of network functionality. In addition to this, we also conduct a survey to examine the human ability to detect sarcasm in tweets for result comparison. We examine three models: Two RNNs, one with Long Short Term Memory (LSTM) cells and one with Gated Recurrent Unit (GRU) cells, and also a CNN. Sarcasm detection is done by binary classification on the same datasets used by related works, and our performance is then compared to that of those works’. The main questions we aim to answer by analyzing the network functionality are what features affect the outcome, and how. By comparing our classifications with those of a basic bag-of-words model, scrambling the word content in tweets and looking at repeatedly misclassified tweets we are able to get a deeper understanding of the networks’ decisions. Experimental results suggest that the networks’ predictions mainly are based on word occurrence in the tweets. The best performance reach an F1-score of 0.842 when using the RNN with LSTM-cells. This network performed better overall among our models, indicating it might be the best option for this particular task. When conducting the survey, the model performed with an F1-score of 0.775 whereas humans reached an average score of 0.701. The model also performed better than a basic bag-of-words model, indicating that deep neural networks might be a feasible approach in tackling the problem of sarcasm detection in text.
Keywords: Data- och informationsvetenskap;Computer and Information Science
Issue Date: 2017
Publisher: Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers)
URI: https://hdl.handle.net/20.500.12380/251695
Collection:Examensarbeten för kandidatexamen // Bachelor Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.