Graph Neural Networks for Mobile Robots: A Systemic GNN Design Solution for Traffic in AGV Systems

Publicerad

Författare

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Automated Guided Vehicle (AGV) systems improve modern warehouse efficiency but require extensive effort in designing the virtual road networks (also known as layouts). A key evaluation metric in this process is waiting time. Traditional simulation-based methods for waiting time estimation are time-consuming, high lighting the need for faster predictive models. In this thesis, we explore Graph Neural Networks (GNNs) for predicting the waiting time on each road segment. We propose a hierarchical GNN framework that integrates a classifier to detect con gested segments and a regressor to estimate the waiting time, effectively addressing the wide-spreading data imbalance issues. Experimental results demonstrate that the framework captures meaningful patterns, providing a potential alternative to traditional simulations in layout design.

Beskrivning

Ämne/nyckelord

automated guided vehicle, layout design, deep learning, graph neural networks, hierarchical framework, waiting time prediction.

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced