Graph Neural Networks for Mobile Robots: A Systemic GNN Design Solution for Traffic in AGV Systems

dc.contributor.authorZhang, Boshen
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerSagitov, Serik
dc.contributor.supervisorAkerlund , Rasmus
dc.date.accessioned2025-09-15T12:45:14Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractAutomated Guided Vehicle (AGV) systems improve modern warehouse efficiency but require extensive effort in designing the virtual road networks (also known as layouts). A key evaluation metric in this process is waiting time. Traditional simulation-based methods for waiting time estimation are time-consuming, high lighting the need for faster predictive models. In this thesis, we explore Graph Neural Networks (GNNs) for predicting the waiting time on each road segment. We propose a hierarchical GNN framework that integrates a classifier to detect con gested segments and a regressor to estimate the waiting time, effectively addressing the wide-spreading data imbalance issues. Experimental results demonstrate that the framework captures meaningful patterns, providing a potential alternative to traditional simulations in layout design.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310481
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectautomated guided vehicle, layout design, deep learning, graph neural networks, hierarchical framework, waiting time prediction.
dc.titleGraph Neural Networks for Mobile Robots: A Systemic GNN Design Solution for Traffic in AGV Systems
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Boshen Zhang_2025.pdf
Storlek:
2.58 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: