Deep learning methods for MRI brain image analysis: 3D convolutional neural networks for Alzheimer's disease detection and brain tumor classification
dc.contributor.author | Nazari, Mahmood | |
dc.contributor.author | Bäckström, Karl | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för elektroteknik | sv |
dc.contributor.department | Chalmers University of Technology / Department of Electrical Engineering | en |
dc.date.accessioned | 2019-07-03T14:38:22Z | |
dc.date.available | 2019-07-03T14:38:22Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/252184 | |
dc.language.iso | eng | |
dc.relation.ispartofseries | Examensarbete - Institutionen för elektroteknik, Chalmers tekniska högskola : EX085/2017 | |
dc.setspec.uppsok | Technology | |
dc.subject | Elektroteknik och elektronik | |
dc.subject | Electrical Engineering, Electronic Engineering, Information Engineering | |
dc.title | Deep learning methods for MRI brain image analysis: 3D convolutional neural networks for Alzheimer's disease detection and brain tumor classification | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Complex adaptive systems (MPCAS), MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- 252184.pdf
- Storlek:
- 6.89 MB
- Format:
- Adobe Portable Document Format
- Beskrivning:
- Fulltext