Adaptive Cabin Climate Control for Battery Electric Vehicles Using TD3 Reinforcement Learning

dc.contributor.authorABUKAR, ABUBAKAR
dc.contributor.departmentChalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE)sv
dc.contributor.departmentChalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE)en
dc.contributor.examinerGao, Kun
dc.contributor.supervisorGao, Kun
dc.date.accessioned2026-01-22T09:49:29Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThe transition from combustion engine vehicles to Battery Electric Vehicles (BEVs) has increased the importance of efficient thermal management in trucks. Conventional cabin climate control methods prioritize transparency and safety but lack adaptability, limiting potential energy savings. This thesis addresses this challenge using the Twin-Delayed Deep Deterministic Policy Gradient (TD3) combined with a novel surrogate model, the Twin Fourier Neural Operator (Twin FNO), designed to capture cabin thermodynamics through partially enforced physics and dual output heads for improved accuracy. The Twin FNO predicts average cabin temperature with a mean absolute error of 0.55 °C while being 180 times faster than numerical solvers. Integrated into the TD3 framework, the agent effectively balances energy efficiency and thermal comfort. It maintains the setpoint temperature when energy is abundant and deliberately creates an offset when energy is limited, achieving up to 40% reduction in Heating Ventilation and Air Conditioning (HVAC) energy consumption with a 6 °C temperature deviation. These results highlight the potential of reinforcement learning and surrogate modeling to enable energy-adaptive thermal control strategies in BEVs while raising questions on acceptable thermal comfort trade-offs.
dc.identifier.coursecodeACEX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310935
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectBattery Electric Vehicles
dc.subjectFourier Neural Operator
dc.subjectTD3
dc.subjectReinforcement Learning
dc.subjectControl Strategies
dc.subjectThermal Management
dc.titleAdaptive Cabin Climate Control for Battery Electric Vehicles Using TD3 Reinforcement Learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
ACEX30 - Abubakar Abukar.pdf
Storlek:
2.1 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: