Aerial Imagery Based Position and Heading Estimation: For maritime autonomous vessels in GNSS-challenged environments

dc.contributor.authorBergman, Algot
dc.contributor.authorLindell, Teodor
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerForsberg, Peter
dc.contributor.supervisorLund, Erik
dc.contributor.supervisorStrömberg, Valter
dc.date.accessioned2023-07-04T11:44:33Z
dc.date.available2023-07-04T11:44:33Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractOne of the most important parts of an autonomous vehicle is the estimation of its position and orientation, which often comes from a GNSS sensor. However, the performance is degraded when the GNSS signals are obstructed. Nowadays, a popular implementation for estimation with accurate precision is to fuse the information from IMU, GNSS and LiDARs. The method of how a position and orientation are calculated from the LiDAR measurements can be done in different ways. This thesis presents a method of how position and orientation can be effectively estimated by matching LiDAR measurements to an aerial image. The method consists of projecting the LiDAR measurements onto the aerial image, filtering the measurements and the image, and then calculating the cross-correlation. The orientation is estimated via stochastic optimization which also finds the maximum correlation to update the position. This is fused in an EKF with information from IMU and a GNSS sensor to get a more precise estimation. The conclusion of the thesis is that the method works well in estimating the position and heading in a GNSS-challenged environment.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/306567
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectExtended Kalman filter
dc.subjectLiDAR
dc.subjectaerial imagery
dc.subjectparticle swarm optimization
dc.subjectcomputer vision
dc.subjectpoint cloud
dc.subjectlocalization
dc.subjectcross-correlation
dc.titleAerial Imagery Based Position and Heading Estimation: For maritime autonomous vessels in GNSS-challenged environments
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
2023 Algot Bergman & Teodor Lindell.pdf
Storlek:
9.79 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: