Relative Pose Regression using Non-Square CNN Kernels: Estimation of translation, rotation and scaling between image pairs with custom layers

dc.contributor.authorKarström, Jonas
dc.contributor.authorLandgren, Örjan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.examinerForsberg, Peter
dc.contributor.supervisorBrenick, Robert
dc.date.accessioned2020-06-21T11:59:56Z
dc.date.available2020-06-21T11:59:56Z
dc.date.issued2020sv
dc.date.submitted2019
dc.description.abstractLocalisation is a research field where handcrafted and complex engineering methods have so far given the best results. However, a general trend in computer science is that data-driven approaches often outperform classical methods. These datadriven approaches have been enabled by better high-resolution range sensors and vast amounts of data. End-to-end deep neural network approaches have much better scalability, but the state of the art localisation networks still use designs originally developed for image classification. These are necessarily not the best-suited design, as they aim to achieve a different task than relative pose regression. We show that custom input layers designed to predict translation, rotation or scaling between images are a possible solution. The networks tested in this thesis give good results, but do not outperform a baseline neural network with the same design as a neural network initially made for image classification.sv
dc.identifier.coursecodeMMSX30sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300920
dc.language.isoengsv
dc.relation.ispartofseries2020:23sv
dc.setspec.uppsokTechnology
dc.subjectConvolutional Neural Networksv
dc.subjectKernelsv
dc.subjectLayersv
dc.subjectLocalisationsv
dc.subjectMachine Learningsv
dc.subjectRelative Pose Regressionsv
dc.subjectVisual Odometrysv
dc.titleRelative Pose Regression using Non-Square CNN Kernels: Estimation of translation, rotation and scaling between image pairs with custom layerssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
2020-23 Jonas Karström & Örjan Landgren.pdf
Storlek:
6.41 MB
Format:
Adobe Portable Document Format
Beskrivning:
Master Thesis

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: