Characterization of Traffic Dynamics in Automated Guided Vehicle Systems: Analyzing and visualizing congestion patterns using causal chains and spectral clustering

dc.contributor.authorAndersson, Calle
dc.contributor.authorVeldhuis, Benjamin
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerDella Vedova, Marco
dc.contributor.supervisorDella Vedova, Marco
dc.contributor.supervisorÅkerlund, Rasmus
dc.date.accessioned2025-04-04T13:44:28Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractAutomated Guided Vehicle (AGV) systems have revolutionized warehouse logistics by enhancing efficiency and reducing labor costs. However, the complexity of these systems can lead to traffic congestion, adversely affecting performance. This masters thesis investigates traffic dynamics in AGV systems using recursive data structures, interactive visualization, and spectral clustering; with the final aim being to describe and analyze congestion in these systems. Our study shows promise in streamlining design processes by providing more sophisticated analysis tools, data-structures for describing congestion, as well as novel ways to uncover and characterize large-scale traffic dynamics in the domain. Ultimately, this project could act as a stepping-stone for further research, by laying the ground-work for applying more formal methods.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309260
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectautomated guided vehicles
dc.subjecttraffic analysis
dc.subjecttraffic modeling
dc.subjectcongestion analysis
dc.subjectcongestion modeling
dc.subjectspectral graph theory
dc.subjectspectral clustering
dc.titleCharacterization of Traffic Dynamics in Automated Guided Vehicle Systems: Analyzing and visualizing congestion patterns using causal chains and spectral clustering
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
2025 Calle Andersson & Benjamin Veldhuis.pdf
Storlek:
5.94 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: