Developing of a numerical framework for transonic axial compressor analysis

dc.contributor.authorHessman Ranman, Robert
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mekanik och maritima vetenskapersv
dc.contributor.departmentChalmers University of Technology / Department of Mechanics and Maritime Sciencesen
dc.contributor.examinerXixto, Carlos
dc.contributor.supervisorSjögren, Oliver
dc.date.accessioned2024-10-08T09:31:32Z
dc.date.available2024-10-08T09:31:32Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractModern engineering in the aerospace field of operations is transitioning from real experimental testing to heavily relying on computer-aided engineering (CAE). Computational fluid dynamics (CFD) is a great tool for obtaining estimates of real operations but computational limitations often lead to the implementation of simplified models of the full governing equations, rendering estimates with a limited accuracy. Validating numerical results to experimental data is a great way of bridging the gap between virtual and real operation, and further provides weight to the validity of the results to the aeronautical engineering community. At Ecole Centrale de Lyon a carbon fiber fan stage has been designed as a reference test case for state-of-the-art fan stage technology, in collaboration with the engine manufacturer Safran. The test case named CATANA is intended as a platform for collaboration between universities and research agencies and to support validation of simulation codes by providing experimental data. In this thesis, the numerical and experimental results generated at Ecole Centrale de Lyon on the CATANA test case is used to establish and validate a numerical framework developed to further be used in a parametric study of fan blade design. The framework is presented in three phases, grid generation, simulations, and validation with CATANA data. The baseline case is established with a low Reynolds number RANS turbulence model with the assumption of steady-state. To further reduce the overall computational load of any given blade design the spacial resolution requirements of a low and high Reynolds’s number turbulence models are investigated by integrating a low-Re k-ε model in the framework in parallel to a high-Re k-ω SST model. The thesis covers an in-depth presentation of meshing routines and numeric setup for both models as well as the implementation of custom external convergence criteria. As a final part of the thesis, the effects of removing the stator from the fan stage are investigated by comparing spanwise distributions and mass flow averaged data downstream of the rotor.
dc.identifier.coursecodeMMSX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308880
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectcompressor
dc.subjectrotor
dc.subjectstator
dc.subjectwall-functions
dc.subjectRANS
dc.subjectconvergence
dc.subjectCFX
dc.subjectTurbogrid
dc.subjectPointwise
dc.titleDeveloping of a numerical framework for transonic axial compressor analysis
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeApplied mechanics (MPAME), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Robert-Thesis-FINAL.pdf
Storlek:
6.49 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: