Topic Modeling and Clustering for Analysis of Road Traffic Accidents

dc.contributor.authorMekonnen, Agazi
dc.contributor.authorAbdullayev, Shamsi
dc.contributor.departmentChalmers tekniska högskola / Institutionen för tillämpad mekaniksv
dc.contributor.departmentChalmers University of Technology / Department of Applied Mechanicsen
dc.date.accessioned2019-07-03T14:32:10Z
dc.date.available2019-07-03T14:32:10Z
dc.date.issued2017
dc.description.abstractIn this thesis, we examined different approaches on how to cluster, summarise and search accident descriptions in Swedish Traffic Accident Data Acquisition (STRADA) dataset. One of the central questions in this project was that how to retrieve similar documents if a query does not have any common words with relevant documents. Another question is how to increase similarity between documents which describe the same or similar scenarios in different words. We designed a new pre-processing technique using keyword extraction and word embeddings to address these issues. Theoretical and empirical results show the pre-processing technique employed improved the results of the examined topic modeling, clustering and document ranking methods.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/250497
dc.language.isoeng
dc.relation.ispartofseriesDiploma work - Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden : 2017:65
dc.setspec.uppsokTechnology
dc.subjectTransport
dc.subjectDatavetenskap (datalogi)
dc.subjectTransport
dc.subjectComputer Science
dc.titleTopic Modeling and Clustering for Analysis of Road Traffic Accidents
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeComputer science – algorithms, languages and logic (MPALG), MSc

Download

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
250497.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:
Fulltext

Collections