Automatic Optimisation of a Battery Pack Cooling Plate
Date
Authors
Type
Examensarbete för masterexamen
Programme
Model builders
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Electric vehicle adoption is on the rise which introduces a need for effective battery pack cooling systems.
Effective cooling systems play a key role in the battery packs service life. This thesis compares two indirect
liquid-cooled cooling configurations and optimises the cooling system in terms of maximum battery cell
temperature difference, maximum battery cell temperature and pressure drop. The analysed part of the cooling
system consists of aluminium plates with channels, where coolant flows through. One configuration consisting
of one large cooling plate and the other of multiple cooling plates.
The heat transfer from the battery pack to the coolant was simulated using the commercial computational fluid
dynamics (CFD) solver Star-CCM+. Using CFD each battery cells temperature was monitored to evaluate the
efficiency of the cooling system. The optimisation involved varying the geometry of the cooling plate channels
to study its effect on the heat transfer.
The study found that placing cooling plates between the battery cells, rather than placing a single large
plate under the battery cells, yielded substantially lower battery cell temperature differences and battery cell
maximum temperatures. This is attributed to the interface area having a large effect on the heat transfer and
the length of the channels having a large effect on the temperature difference and pressure drop. While using
multiple plates the maximum battery cell temperature was decreased by 21.4 K and the temperature difference
was 0.452 K lower. Several channel designs were tested based on the results to further improve the multiple
cooling plate configuration. The temperature difference and maximum temperature was further reduced by
0.066 K and 0.634 K respectively.
Description
Keywords
Battery, Lithium ion, BTMS, Thermal Management, CFD, Heat transfer, EV, Battery Degradation, Liquid cooled, Cooling plate