Vision-based Vehicle Ego Velocity Estimation

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Vehicle ego velocity estimation is an interesting topic of research, as a reliable and accurate estimation method is crucial in vehicle motion control. At the same time, smart vehicles are often equipped with multiple sensors, such as cameras, radar, and so on. By incorporating the vision-based velocity method, we can increase the system redundancy in case of other sensor failures. In this thesis, we proposed a method that can predict accurate forward velocity as well as leftward velocity. In our experiments, the best performance is 0.526(km/h) MAE and 0.751(km/h) RMSE for forward velocity estimation, and 0.171(km/h) MAE and 0.250(km/h) RMSE for leftward velocity estimation. Moreover, to make our method more reliable in practical use, we also performed uncertainty estimation on the model with the best performance, which makes our method more applicable.

Beskrivning

Ämne/nyckelord

Deep learning, Computer Vision, Velocity estimation, Uncertainty estimation

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced