Vision-based Vehicle Ego Velocity Estimation

dc.contributor.authorDENG, RUIKUN
dc.contributor.authorPENG, RUI
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerSintorn, Erik
dc.contributor.supervisorAssarsson, Ulf
dc.date.accessioned2023-12-20T18:20:24Z
dc.date.available2023-12-20T18:20:24Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractVehicle ego velocity estimation is an interesting topic of research, as a reliable and accurate estimation method is crucial in vehicle motion control. At the same time, smart vehicles are often equipped with multiple sensors, such as cameras, radar, and so on. By incorporating the vision-based velocity method, we can increase the system redundancy in case of other sensor failures. In this thesis, we proposed a method that can predict accurate forward velocity as well as leftward velocity. In our experiments, the best performance is 0.526(km/h) MAE and 0.751(km/h) RMSE for forward velocity estimation, and 0.171(km/h) MAE and 0.250(km/h) RMSE for leftward velocity estimation. Moreover, to make our method more reliable in practical use, we also performed uncertainty estimation on the model with the best performance, which makes our method more applicable.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307459
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectDeep learning
dc.subjectComputer Vision
dc.subjectVelocity estimation
dc.subjectUncertainty estimation
dc.titleVision-based Vehicle Ego Velocity Estimation
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer systems and networks (MPCSN), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-111 RD RP.pdf
Storlek:
6 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: